72 research outputs found

    Nitrogen Cycle Chemistry with Metal-Pincer Complexes Relevant to Electrochemical Nitrogen Fixation

    Get PDF
    The large-scale industrial fixation of N2 to NH3 through the Haber-Bosch process has cemented itself as the primary means to provide N for fertilizer and commodity chemicals globally. However, our dependence on this process is unsustainable in the long term due to its reliance on fossil fuels to generate H2 and to provide the substantial energy input for the reaction, paired with high infrastructure requirements that necessitate centralized synthesis plants and sophisticated transportation networks. As an alternative, electrochemical fixation of N2, coupling water oxidation to provide proton (H+) and electron (e–) equivalents with the N2 reduction reaction (NRR) to achieve the 6H+/6e– reduction of N2 to 2 NH3, could operate on a smaller, localized scale while utilizing renewable sources to generate electrical energy to drive the reaction. A key challenge in achieving electrochemical N2 fixation is the development of catalysts for electrochemical NRR. Existing heterogeneous catalysts for NRR suffer from poor activity, selectivity, and robustness. Insights that aid the development of better NRR catalysts may be found by studying molecular systems that can reduce N2. This thesis probes potential N2 functionalization pathways that could be involved in electrochemical NRR by studying molecular model systems in which N2 binds to, or is cleaved by, reduced metal-pincer complexes. Chapter 1 describes electrochemical N2 fixation as an alternative to the Haber-Bosch process. A molecular approach towards understanding electrochemical NRR is proposed, especially through bimetallic N2 cleavage to form metal nitrides. Strategies for the subsequent functionalization of the metal nitride are discussed, primarily via proton-coupled electron transfer (PCET) reduction of the nitride into NH3. Challenges involved in PCET nitride reduction, as well as opportunities inspired by molecular N2 reduction catalysts and recent discoveries of potent PCET reagents, are identified and applied to a hypothetical system for electrochemical NRR. Chapter 2 describes the protonation and electrochemical reduction of Ir- and Rh-pincer complexes that can strongly bind N2. The potential utility of these complexes in an electrochemical NRR system are assessed by complimentary electrochemical and spectroscopic studies exploring their stepwise protonation and electrochemical reduction. Protonation was found to be a prerequisite for electrochemical reduction of the N2 complexes, with protonation occurring at the metal center to form metal hydrides. Protonation triggers release of the N2 ligand, preventing reductive N2 functionalization with these complexes. Chapter 3 investigates the possibility of oxidative functionalization of an N2-derived Re nitride in order to form NOx species. Although no N–O bond formation was achieved at the nitride, a series of Re nitrides was synthesized and characterized in which the metal center is oxidized by 1e– and/or the supporting pincer ligand is oxidized to a nitroxide. The Re-nitride interaction was monitored over the series using NMR and IR spectroscopies, X-ray crystallography, and computational methods. Cooperative oxidation of both the metal center and the supporting ligand results in the weakest Re-nitride interaction, more localization of the LUMO at the nitride ligand, and an umpolung in nitride reactivity. Chapter 4 applies PCET methods to N2-derived Re nitrides in an attempt to reduce the nitride to NH3, thus closing the cycle of N2 to NH3. Stepwise PCET mechanisms were prohibited by high-energy intermediates in both systems; however, the combination of SmI2 and H2O to generate a strong concerted PCET reagent resulted in formation of 74% yield of NH4+ in one system, but exclusive production of H2 in the other. Other PCET methods, such as pairing organic H-atom transfer reagents with SmI2, are also assessed for PCET nitride reduction. Chapter 5 studies the conversion of NH3 to a nitride in a Re system that can also cleave N2. Re-ammine and Re-amide intermediates were isolated, and the mechanisms of H atom removal from these to form the nitride were identified. Experimental determination of the N–H bond enthalpies in the Re-amide were used to benchmark computational studies elucidating the thermodynamics of N–H bond cleavage (and formation, the microscopic reverse). The putative Re-imide intermediate in the PCET reduction pathway was found to feature a particularly weak N–H bond, representing a thermodynamic bottleneck to PCET nitride reduction in this system

    An Iron Polypyridyl Electrocatalyst for Hydrogen Generation in Aqueous Solutions

    Get PDF
    An iron polypyridyl complex has been synthesized, characterized, and analyzed as an electrocatalyst for proton reduction. The complex is highly active in both organic and aqueous solutions, exhibiting a catalytic rate of 1200s-1 at 660 mV overpotential in acetonitrile and 3500s-1 at 800 mV overpotential in 1:1 water:acetonitrile. These rates establish the complex as one of the most active iron electrocatalyst for proton reduction reported at this time. Additionally, the catalyst can generate hydrogen from aqueous buffer solutions between pH= 3-6, with a turnover number of 23 over one hour at a Faradaic efficiency of 98%

    Testing SOAR Tools in Use

    Full text link
    Modern security operation centers (SOCs) rely on operators and a tapestry of logging and alerting tools with large scale collection and query abilities. SOC investigations are tedious as they rely on manual efforts to query diverse data sources, overlay related logs, and correlate the data into information and then document results in a ticketing system. Security orchestration, automation, and response (SOAR) tools are a new technology that promise to collect, filter, and display needed data; automate common tasks that require SOC analysts' time; facilitate SOC collaboration; and, improve both efficiency and consistency of SOCs. SOAR tools have never been tested in practice to evaluate their effect and understand them in use. In this paper, we design and administer the first hands-on user study of SOAR tools, involving 24 participants and 6 commercial SOAR tools. Our contributions include the experimental design, itemizing six characteristics of SOAR tools and a methodology for testing them. We describe configuration of the test environment in a cyber range, including network, user, and threat emulation; a full SOC tool suite; and creation of artifacts allowing multiple representative investigation scenarios to permit testing. We present the first research results on SOAR tools. We found that SOAR configuration is critical, as it involves creative design for data display and automation. We found that SOAR tools increased efficiency and reduced context switching during investigations, although ticket accuracy and completeness (indicating investigation quality) decreased with SOAR use. Our findings indicated that user preferences are slightly negatively correlated with their performance with the tool; overautomation was a concern of senior analysts, and SOAR tools that balanced automation with assisting a user to make decisions were preferred

    Functional Analysis of Alleged NOGGIN Mutation G92E Disproves Its Pathogenic Relevance

    Get PDF
    We identified an amino acid change (p.G92E) in the Bone Morphogenetic Protein antagonist NOGGIN in a 22-month-old boy who presented with a unilateral brachydactyly type B phenotype. Brachydactyly type B is a skeletal malformation that has been associated with increased Bone Morphogenetic Protein pathway activation in other patients. Previously, the amino acid change p.G92E in NOGGIN was described as causing fibrodysplasia ossificans progressiva, a rare genetic disorder characterized by limb malformations and progressive heterotopic bone formation in soft tissues that, like Brachydactyly type B, is caused by increased activation of Bone Morphogenetic Protein signaling. To determine whether G92E-NOGGIN shows impaired antagonism that could lead to increased Bone Morphogenetic Protein signaling, we performed functional assays to evaluate inhibition of BMP signaling. Interestingly, wt-NOGGIN shows different inhibition efficacies towards various Bone Morphogenetic Proteins that are known to be essential in limb development. However, comparing the biological activity of G92E-NOGGIN with wt-NOGGIN, we observed that G92E-NOGGIN inhibits activation of bone morphogenetic protein signaling with equal efficiency as wt-NOGGIN, supporting that G92E-NOGGIN does not cause pathological effects. Genetic testing of the child's parents revealed the same amino acid change in the healthy father, further supporting that p.G92E is a neutral amino acid substitution in NOGGIN. We conclude that p.G92E represents a rare polymorphism of the NOGGIN gene - causing neither brachydactyly nor fibrodysplasia ossificans progressiva. This study highlights that a given genetic variation should not be considered pathogenic unless supported by functional analyses

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Physical Process Monitoring for Intrusion Detection in Industrial Control Systems

    No full text
    Industrial Control Systems(ICS) of the past have been shielded from network intrusions by means of an “air gap” separating the system from the open internet. However, this protection is no longer universally present in modern networked ICS. With the development and execution of new malware targeting Programmable Logic Controllers (PLC) in ICS, it has become increasingly urgent for new techniques for discovering and identifying industrial and manufacturing behavior indicative of a malicious intrusion.We aim to develop a modular and process-isolated sensor-based addition to current Intrusion Detection Systems. We plan to design and implement an “add-on” IDS aimed at monitoring the physical processes controlled by the PLC. Our proposed system will be isolated from the potentially compromised PLC, and shall be monitoring the behavioral patterns of physical processes by processing the data collected from the sensors that are isolated from those controlled by the PLC, in order to detect potential presence of anomalies

    Dinitrogen Reduction to Ammonium at Rhenium Utilizing Light and Proton-Coupled Electron Transfer

    No full text
    The direct scission of the triple bond of dinitrogen (N2) by a metal complex is an alluring entry point into the transformation of N2 to ammonia (NH3) in molecular catalysis. Reported herein is a pincer-ligated rhenium system that reduces N2 to NH3 via a well-defined reaction sequence involving reductive formation of a bridging N2 complex, photolytic N2 splitting, and proton-coupled electron transfer (PCET) reduction of the metal-nitride bond. The new complex (PONOP)ReCl3 (PONOP = 2,6- bis(diisopropylphosphinito)pyridine) is reduced under N2 to afford the trans,trans-isomer of the bimetallic complex [(PONOP)ReCl2]2(μ-N2) as an isolable kinetic product that isomerizes sequentially upon heating into the trans,cis and cis,cis isomers. All isomers are inert to thermal N2 scission, and thetrans,trans-isomer is also inert to photolytic N2 cleavage. In striking contrast, illumination of the trans,cisand cis,cis-isomers with blue light affords the octahedral nitride complex cis-(PONOP)Re(N)Cl2 in 47% spectroscopic yield and 11% quantum efficiency. The photon energy drives an N2 splitting reaction that is thermodynamically unfavorable under standard conditions, producing a nitrido complex that reacts with SmI2/H2O to produce a rhenium tetrahydride complex and furnish ammonia in 74% yield.</div
    corecore